Integral domain
An integral domain is a commutative domain.
More explicitly a ring,
, is an integral domain if:
- it is commutative,
(where
and
are the additive and multiplicative identities, respectively)- and it contains no zero divisors (i.e. there are no nonzero
such that
).
Examples
Some common examples of integral domains are:
- The ring
of integers. - Any field.
- The p-adic integers,
. - For any integral domain,
, the polynomial ring
is also an integral domain. - Any finite integral domain is a field.
This article is a stub. Help us out by expanding it.