Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

Division

In mathematics, division is an arithmetic operation which is the inverse of multiplication.

Overview

Since division is the inverse of multiplication then $a/b=a\cdot\frac{1}{b}.$


Definition

If $a=bc$ and $b\ne 0$, then $\frac{a}{b}=c$, where $a$ is the dividend, $b$ is the divisor, and $c$ is the quotient.

Process

The most common division algorithm used is with long division, a process that divides parts of numbers. Long division "breaks" up the number to make division simpler.

      19
   6)114
     -6
      54      
     -54 
       0


Conventions

If the quotient is not a whole number, it is usually written in decimal form: $5\div2=2.5$. Sometimes, it is written with its remainder: $5\div2=2\text{, remainder }1$.

Dividing Special Numbers

Fractions

If you divide by a fraction, multiply the dividend by the divisor's reciprocal (Note: You will see a definition of a reciprocal if you go to the article Ordinary Multiplication).

For instance: $6 \div \tfrac34 = 6 \cdot \tfrac43 = 8.$

Decimals

When dividing by decimals, multiply both sides by a power of 10 so the divisor is an integer.

For instance: $15 \div 2.5 = 150 \div 25 = 6.$

One and Itself

Any number divided by one equals itself. Similarly, any number divided by itself equals one.

For instance: $1992 \div 1 = 1992$ and $1985 \div 1985 = 1.$

Zero

Division by $0$ is undefined. Equations where any values are divided by $0$ will become undefined also.

See Also

This article is a stub. Help us out by expanding it.