Bretschneider's formula
Suppose we have a quadrilateral with edges of length
(in that order) and diagonals of length
. Bretschneider's formula states that the area
.
It can be derived with vector geometry.
Proof
Suppose a quadrilateral has sides
such that
and that the diagonals of the quadrilateral are
and
. The area of any such quadrilateral is
.
Lagrange's Identity states that
. Therefore:
Then if
represent
(and are thus the side lengths) while
represent
(and are thus the diagonal lengths), the area of a quadrilateral is: