Bretschneider's formula: Difference between revisions
mNo edit summary |
Twod horse (talk | contribs) mNo edit summary |
||
| Line 46: | Line 46: | ||
* [[Geometry]] | * [[Geometry]] | ||
[[Category:Geometry]] | [[Category:Geometry]] | ||
[[Category:Theorems]] | [[Category:Theorems]] | ||
Latest revision as of 02:51, 12 February 2021
Suppose we have a quadrilateral with edges of length
(in that order) and diagonals of length
. Bretschneider's formula states that the area
.
It can be derived with vector geometry.
Proof
Suppose a quadrilateral has sides
such that
and that the diagonals of the quadrilateral are
and
. The area of any such quadrilateral is
.
Lagrange's Identity states that
. Therefore:
Then if
represent
(and are thus the side lengths) while
represent
(and are thus the diagonal lengths), the area of a quadrilateral is: