2024 AMC 12B Problems/Problem 8
Problem
What value of
satisfies
Solution 1
We have
\begin{align*}
\log_2x\cdot\log_3x&=2(\log_2x+\log_3x) \\
1&=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\
1&=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\
1&=2(\log_x3+\log_x2) \\
\log_x6&=\frac{1}{2} \\
x^{\frac{1}{2}}&=6 \\
x&=36
\end{align*}
so
~kafuu_chino
Solution 2 (Change of Base)
\begin{align*} \frac{\log_2x \cdot \log_3x}{\log_2x+\log_3x} &= 2 \\[6pt] \log_2x \cdot \log_3x &= 2(\log_2x+\log_3x) \\[6pt] \log_2x \cdot \log_3x &= 2\log_2x + 2\log_3x \\[6pt] \frac{\log x}{\log 2} \cdot \frac{\log x}{\log 3} &= 2\frac{\log x}{\log 2} + 2\frac{\log x}{\log 3} \\[6pt] \frac{(\log x)^2}{\log 2 \cdot \log 3} &= \frac{2\log x \cdot \log 3 + 2\log x \cdot \log 2}{\log 2 \cdot \log 3} \\[6pt] (\log x)^2 &= 2\log x \cdot \log 3 + 2\log x \cdot \log 2 \\[6pt] (\log x)^2 &= 2\log x(\log 2 + \log 3) \\[6pt] \log x &= 2(\log 2 + \log 3) \\[6pt] x &= 10^{2(\log 2 + \log 3)} \\[6pt] x &= (10^{\log 2} \cdot 10^{\log 3})^2 \\[6pt] x &= (2 \cdot 3)^2 = 6^2 = \boxed{\textbf{(C) }36} \end{align*}
~sourodeepdeb
Solution 3 (Using Variables)
Let
and
. This gives us the equation
Then, from our definitions of
and
,
and
, so
Taking the logarithm base
of both sides of this equation gives us
, hence
Now, we substitute
for
in the equation, which gives
Notice that we can factor out an
in the numerator and denominator, if
and doing so yields
We know that
so putting that in gives us
So,
, which, using the change of base formula, is equivalent to
thus,
Finally, using our original definition of
we have
so
~hdanger
Video Solution 1 by TheBeautyofMath
https://youtu.be/AKLPjTRPF4Q?t=539
~IceMatrix
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 7 |
Followed by Problem 9 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing