2023 AIME I Problems/Problem 15
Problem
Find the largest prime number
for which there exists a complex number
satisfying
- the real and imaginary part of
are both integers;
and- there exists a triangle whose three side lengths are
the real part of
and the imaginary part of 
Solution
Assume that
. Then,
Note that by the Triangle Inequality,
Thus, we know
Without loss of generality, assume
(as otherwise, consider
). If
, then
`Thus, this means
or
. Also note that the roots of
are
, so thus if
,
Note that
so
, and
. If
, then
. Note that
, and
, so
or
. However, then
, absurd.
If
, by similar logic, we have that
, so
. However, once again,
. If
, by the same logic,
, so
, where we run into the same problem. Thus
indeed.
If
, note that
We note that
works. Thus, we just need to make sure that if
,
. But this is easy, as
absurd. Thus, the answer is
.
Solution 2
Denote
. Thus,
.
Thus,
Because
,
,
are three sides of a triangle, we have
and
.
Thus,
Because
,
,
are three sides of a triangle, we have the following triangle inequalities:
We notice that
, and
,
, and
form a right triangle. Thus,
.
Because
,
.
Therefore, (3) holds.
Conditions (4) and (5) can be written in the joint form as
We have
and
.
Thus, (5) can be written as
Therefore, we need to jointly solve (1), (2), (6).
From (1) and (2), we have either
, or
.
In (6), by symmetry, without loss of generality, we assume
.
Thus, (1) and (2) are reduced to
Let
. Plugging this into (6), we get
Because
is a prime,
and
are relatively prime.
Therefore, we can use (7), (8),
, and
and
are relatively prime to solve the problem.
To facilitate efficient search, we apply the following criteria:
To satisfy (7) and
, we have
.
In the outer layer, we search for
in a decreasing order.
In the inner layer, for each given
, we search for
.
Given
, we search for
in the range
.
We can prove that for
, there is no feasible
.
The proof is as follows.
For
, to satisfy
, we have
.
Thus,
.
Thus, the R.H.S. of (8) has the following upper bound
Hence, to satisfy (8), a necessary condition is
However, this cannot be satisfied for
.
Therefore, there is no feasible solution for
.
Therefore, we only need to consider
.
We eliminate
that is not relatively prime to
.
We use the following criteria to quickly eliminate
that make
a composite number.
- For
, we eliminate
satisfying
.
- For
(resp.
), we eliminate
satisfying
(resp.
).
\item For the remaining
, check whether (8) and the condition that
is prime are both satisfied.
The first feasible solution is
and
.
Thus,
.
\item For the remaining search, given
, we only search for
.
Following the above search criteria, we find the final answer as
and
.
Thus, the largest prime
is
.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 3
Let
.
,
.
According to the question,
,
, and
construct the side-lengths of a non-degenerate triangle.
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
This means that the values of
and
should be limited in coincident areas these two graphs.
Error creating thumbnail: Unable to save thumbnail to destination
Also
If
,
, making statement
false.
Combining with the former graph depicting possible ranges of
, by loss of generality, we assume
both
and exists in the first
of the circle.
Let
.
To clearly visualize, we graph out
and
separately.
Error creating thumbnail: Unable to save thumbnail to destination
When
is around
, b reaches its maximum upper bound.
Testing values of
in decreasing order, starting from 8, we test out each corresponding value of
(
)by trying the two whole numbers closest to the real value of
.
We finally get that
and
~cassphe
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~MathProblemSolvingSkills.com
Animated Video Solution
~Star League (https://starleague.us)
See also
| 2023 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination