Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2019 AMC 10A Problems/Problem 14

The following problem is from both the 2019 AMC 10A #14 and 2019 AMC 12A #8, so both problems redirect to this page.

Problem

For a set of four distinct lines in a plane, there are exactly $N$ distinct points that lie on two or more of the lines. What is the sum of all possible values of $N$?

$\textbf{(A) } 14 \qquad \textbf{(B) } 16 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 21$

Solution

It is possible to obtain $0$, $1$, $3$, $4$, $5$, and $6$ points of intersection, as demonstrated in the following figures:


[asy] unitsize(2cm); real d = 2.5; draw((-1,.6)--(1,.6),Arrows); draw((-1,.2)--(1,.2),Arrows); draw((-1,-.2)--(1,-.2),Arrows); draw((-1,-.6)--(1,-.6),Arrows);  draw((-1+d,0)--(1+d,0),Arrows); draw((0+d,1)--(0+d,-1),Arrows); draw(dir(45)+(d,0)--dir(45+180)+(d,0),Arrows); draw(dir(135)+(d,0)--dir(135+180)+(d,0),Arrows); dot((0+d,0));  draw((-1+2*d,sqrt(3)/3)--(1+2*d,sqrt(3)/3),Arrows); draw((-1/4-1/2+2*d, sqrt(3)/12-sqrt(3)/2)--(-1/4+1/2+2*d,sqrt(3)/12+sqrt(3)/2),Arrows); draw((1/4+1/2+2*d, sqrt(3)/12-sqrt(3)/2)--(1/4-1/2+2*d,sqrt(3)/12+sqrt(3)/2),Arrows); draw((-1+2*d,-sqrt(3)/6)--(1+2*d,-sqrt(3)/6),Arrows); dot((0+2*d,sqrt(3)/3)); dot((-1/2+2*d,-sqrt(3)/6)); dot((1/2+2*d,-sqrt(3)/6));  draw((-1/3,1-d)--(-1/3,-1-d),Arrows);  draw((1/3,1-d)--(1/3,-1-d),Arrows); draw((-1,-1/3-d)--(1,-1/3-d),Arrows); draw((-1,1/3-d)--(1,1/3-d),Arrows); dot((1/3,1/3-d)); dot((-1/3,1/3-d)); dot((1/3,-1/3-d)); dot((-1/3,-1/3-d));  draw((-1+d,sqrt(3)/12-d)--(1+d,sqrt(3)/12-d),Arrows); draw((-1/4-1/2+d, sqrt(3)/12-sqrt(3)/2-d)--(-1/4+1/2+d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw((1/4+1/2+d, sqrt(3)/12-sqrt(3)/2-d)--(1/4-1/2+d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw((-1+d,-sqrt(3)/6-d)--(1+d,-sqrt(3)/6-d),Arrows); dot((0+d,sqrt(3)/3-d)); dot((-1/2+d,-sqrt(3)/6-d)); dot((1/2+d,-sqrt(3)/6-d)); dot((-1/4+d,sqrt(3)/12-d)); dot((1/4+d,sqrt(3)/12-d));  draw((-1/4-1/2+2*d, sqrt(3)/12-sqrt(3)/2-d)--(-1/4+1/2+2*d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw((1/4+1/2+2*d, sqrt(3)/12-sqrt(3)/2-d)--(1/4-1/2+2*d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw(dir(30)+(2*d,-d)--dir(30+180)+(2*d,-d),Arrows); draw(dir(150)+(2*d,-d)--dir(-30)+(2*d,-d),Arrows); dot((0+2*d,0-d)); dot((0+2*d,sqrt(3)/3-d)); dot((-1/2+2*d,-sqrt(3)/6-d)); dot((1/2+2*d,-sqrt(3)/6-d)); dot((-1/4+2*d,sqrt(3)/12-d)); dot((1/4+2*d,sqrt(3)/12-d)); [/asy]

It is clear that the maximum number of possible intersections is ${4 \choose 2} = 6$, since each pair of lines can intersect at most once. In addition, by looking at the answer choices, we know that we cannot have 7 points of intersection or else our answer would be greater than the given answer choices. Our answer is given by the sum $0+1+3+4+5+6=\boxed{\textbf{(D)} 19}$.

Video Solution 1

https://youtu.be/-0s2xGhU8wM

~Education, the Study of Everything

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination