2009 AIME I Problems/Problem 1
Problem
Call a
-digit number geometric if it has
distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers.
Solution 1
Assume that the largest geometric number starts with a
. We know that the common ratio must be a rational of the form
for some integer
, because a whole number should be attained for the 3rd term as well. When
, the number is
. When
, the number is
. When
, we get
, but the integers must be distinct. By the same logic, the smallest geometric number is
. The largest geometric number is
and the smallest is
. Thus the difference is
.
Solution 2
Consider the three-digit number
. If its digits form a geometric progression, we must have that
, that is,
.
The minimum and maximum geometric numbers occur when
is minimized and maximized, respectively. The minimum occurs when
; letting
and
achieves this, so the smallest possible geometric number is 124.
For the maximum, we have that
;
is maximized when
is the greatest possible perfect square; this happens when
, yielding
. Thus, the largest possible geometric number is 964.
Our answer is thus
.
Solution 3
The smallest geometric number is
because
and any number containing a zero does not work.
is the largest geometric number because the middle digit cannot be 8 or 7. Subtracting the numbers gives
Video Solution by OmegaLearn
https://youtu.be/1-iWPCWPsLw?t=195
~ pi_is_3.14
Video Solution
~IceMatrix
Video Solution 2
https://www.youtube.com/watch?v=P00iOJdQiL4
~Shreyas S
See also
| 2009 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by First Question |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination