2006 JBMO Problems/Problem 1
Problem
If
is a composite number, then
divides
.
Solution
We shall prove a more stronger result that
divides
for any composite number
which will cover the case of problem statement.
Let
where
.
Let us define set
First let's note that
Now, all multiples of
from
to
Since
we have that
Also, since
we have that
So, we have that
,
in other words,
divides
Now, all multiples of
from
to
Since
we have that
Also, since
so we have that
So, we have that
,
in other words,
divides
Thus
divides
.
~Kris17