2001 AIME I Problems/Problem 9
Problem
In triangle
,
,
and
. Point
is on
,
is on
, and
is on
. Let
,
, and
, where
,
, and
are positive and satisfy
and
. The ratio of the area of triangle
to the area of triangle
can be written in the form
, where
and
are relatively prime positive integers. Find
.
Solution
Solution 1
![[asy] /* -- arbitrary values, I couldn't find nice values for pqr please replace if possible -- */ real p = 0.5, q = 0.1, r = 0.05; /* -- arbitrary values, I couldn't find nice values for pqr please replace if possible -- */ pointpen = black; pathpen = linewidth(0.7) + black; pair A=(0,0),B=(13,0),C=IP(CR(A,17),CR(B,15)), D=A+p*(B-A), E=B+q*(C-B), F=C+r*(A-C); D(D(MP("A",A))--D(MP("B",B))--D(MP("C",C,N))--cycle); D(D(MP("D",D))--D(MP("E",E,NE))--D(MP("F",F,NW))--cycle); [/asy]](http://latex.artofproblemsolving.com/a/a/5/aa532b18510960c694fe8213246465f219c7d942.png)
We let
denote area; then the desired value is
Using the formula for the area of a triangle
, we find that
and similarly that
and
. Thus, we wish to find
We know that
, and also that
. Substituting, the answer is
, and
.
Solution 2
By the barycentric area formula, our desired ratio is equal to
so the answer is
Solution 3 (Informal)
Since the only conditions are that
and
, we can simply let one of the variables be equal to 0. In this case, let
. Then,
and
=
. Note that the ratio between the area of
and
is equivalent to
. Solving this system of equations, we get
, and
. Plugging back into
, we get
, so the answer is
Note
Because the givens in the problem statement are all regarding the ratios of the sides, the side lengths of triangle
, namely
, are actually not necessary to solve the problem. This is clearly demonstrated in all of the above solutions, as the side lengths are not used at all.
See also
| 2001 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing