Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

1990 AJHSME Problems/Problem 21

Problem

A list of $8$ numbers is formed by beginning with two given numbers. Each new number in the list is the product of the two previous numbers. Find the first number if the last three are shown: \[\text{\underline{\hspace{3 mm}?\hspace{3 mm}}\hspace{1 mm},\hspace{1 mm} \underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm} \underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm} \underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm} \underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{2 mm}16\hspace{2 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{2 mm}64\hspace{2 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{1 mm}1024\hspace{1 mm}}}\] $\text{(A)}\ \frac{1}{64} \qquad \text{(B)}\ \frac{1}{4} \qquad \text{(C)}\ 1 \qquad \text{(D)}\ 2 \qquad \text{(E)}\ 4$

Solution

If we do $64/16$ we get $4$, then we do $16/4$ giving $4$ again, then $4/4$ is $1$ and $4/1$ is $4$ and finally $1/4$ gives $1/4$ as the answer, which is $\boxed{\text{B}}$

See Also

1990 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions