1986 AIME Problems/Problem 11
Problem
The polynomial
may be written in the form
, where
and the
's are constants. Find the value of
.
Solution
Solution 1
Using the geometric series formula,
. Since
, this becomes
. We want
, which is the coefficient of the
term in
(because the
in the denominator reduces the degrees in the numerator by
). By the Binomial Theorem, this is
.
Solution 2
Again, notice
. So
We want the coefficient of the
term of each power of each binomial, which by the binomial theorem is
. The Hockey Stick Identity tells us that this quantity is equal to
.
Solution 3
Again, notice
. Substituting
for
in
gives:
From binomial theorem, the coefficient of the
term is
. This is actually the sum of the first 16 triangular numbers, which evaluates to
.
Solution 4(calculus)
Let
and
.
Then, since
,
by the power rule.
Similarly,
Now, notice that if
, then
, so
, and
.
Now, we can use the hockey stick theorem to see that
Thus,
-AOPS81619
Solution 5 (Linear Algebra)
Let
be the vector space of polynomials of degree
and let
and
be two bases for
.
Let
be the polynomial given in the problem, and it is easy to see that
Note that the transformation matrix from
to
can be easily found to be
I claim that
where the term
is negated if
is odd.
One can prove that the
th row of
dotted with the
th column of
is
by using combinatorial identities, which is left as an exercise for the reader. Thus, since the two matrices multiply to form
we have proved that
To find the coordinates of
under basis
we compute the product
where the last equality was obtained via Hockey Stick Identity.
Thus, our answer is
-fidgetboss_4000
See also
| 1986 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 10 |
Followed by Problem 12 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination