1982 AHSME Problems/Problem 14
Problem 14
In the adjoining figure, points
and
lie on line segment
, and
, and
are diameters of circle
, and
, respectively. Circles
, and
all have radius
and the line
is tangent to circle
at
. If
intersects circle
at points
and
, then chord
has length
Solution
Drop a perpendicular line from
to
at point
.
, and since
is similar to
.
.
so by the Pythagorean Theorem,
. Thus
Answer is then
.
See Also
| 1982 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing