Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

1981 AHSME Problems/Problem 24

Problem

If $\theta$ is a constant such that $0 < \theta < \pi$ and $x + \dfrac{1}{x} = 2\cos{\theta}$, then for each positive integer $n$, $x^n + \dfrac{1}{x^n}$ equals

$\textbf{(A)}\ 2\cos\theta\qquad \textbf{(B)}\ 2^n\cos\theta\qquad \textbf{(C)}\ 2\cos^n\theta\qquad \textbf{(D)}\ 2\cos n\theta\qquad \textbf{(E)}\ 2^n\cos^n\theta$

Solution

Multiply both sides by $x$ and rearrange to $x^2-2x\cos(\theta)+1=0$. Using the quadratic equation, we can solve for $x$. After some simplifying:

\[x=\cos(\theta) + \sqrt{\cos^2(\theta)-1}\] \[x=\cos(\theta) + \sqrt{(-1)(\sin^2(\theta))}\] \[x=\cos(\theta) + i\sin(\theta)\]

Substituting this expression in to the desired $x^n + \dfrac{1}{x^n}$ gives:

\[(\cos(\theta) + i\sin(\theta))^n + (\cos(\theta) + i\sin(\theta))^{-n}\]

Using DeMoivre's Theorem:

\[=\cos(n\theta) + i\sin(n\theta) + \cos(-n\theta) + i\sin(-n\theta)\]

Because $\cos$ is even and $\sin$ is odd:

\[=\cos(n\theta) + i\sin(n\theta) + \cos(n\theta) - i\sin(n\theta)\]

\[=\boxed{2\cos(n\theta)},\]

which gives the answer $\boxed{\textbf{D}}.$

Solution 2

Because we have \(x + \frac{1}{x} = 2\cos \theta\), squaring both sides gives \[x^2 + 2 + \frac{1}{x^2} = 4\cos^2 \theta.\] Subtracting 2 from both sides, we get \[x^2 + \frac{1}{x^2} = 4\cos^2 \theta - 2.\] Rewriting, \[x^2 - \frac{1}{x^2} = 2(2\cos^2 \theta - 1) = 2\cos(2\theta).\] Now, looking at the answer choices, the only one matching this form for \(n = 2\) is $\boxed{\textbf{D}}.$

~Voidling

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination