1976 IMO Problems/Problem 5
Problem
We consider the following system
with
:
in which every coefficient is an element from the set ![]()
Prove that there exists a solution
for the system with the properties:
a.) all
are integers
b.) there exists at least one j for which
c.)
for any
Solution
First of all note that we have
possible nonzero vectors
such that
are integers.
But
can only assume
different values, because if it is maximized/minimized by
, we have that
(if
, it doesn't affect the sum, if it is
,
, and if it is
,
).
From this we conclude that there are at most
possible values for the vector
.
But we have that:
We conclude that by the pigeonhole principle there are two distinct vectors being mapped to the same vector. Taking their difference we have a vector with the desired properties.
The above solution was posted and copyrighted by Jorge Miranda. The original thread for this problem can be found here: [1]
See also
| 1976 IMO (Problems) • Resources | ||
| Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
| All IMO Problems and Solutions | ||