2018 AMC 10B Problems/Problem 24
Problem
Let
be a regular hexagon with side length
. Denote
,
, and
the midpoints of sides
,
, and
, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of
and
?
Answer:
Solution
pair A,B,C,D,E,F,W,X,Y,Z;
A=(0,sqrt(3));
B=(1,sqrt(3));
C=(3/2,sqrt(3)/2);
D=(1,0);
E=(0,0);
F=(-1/2,sqrt(3)/2);
X=(1/2, sqrt(3));
Y=(5/4, sqrt(3)/4);
Z=(-1/4, sqrt(3)/4);
M=(0,sqrt(3)/2);
N=(1,3/2);
O=(1,1/2);
draw(A--B--C--D--E--F--cycle);
draw(A--C--E--cycle);
draw(X--Y--Z--cycle);
draw(M—N—O—cycle);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,ESE);
label("$D$",D,SE);
label("$E$",E,SW);
label("$F$",F,WSW);
label("$X$", X, N);
label("$Y$", Y, ESE);
label("$Z$", Z, WSW);
label("$M$",M, W);
label("$N$", N, NE);
label("$O$", O, SE);
(Error making remote request. Unknown error_msg)
See Also
| 2018 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 23 |
Followed by Problem 25 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2018 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing