Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

1999 AMC 8 Problems/Problem 17

Problem

At Central Middle School the 108 students who take the AMC 8 meet in the evening to talk about problems and eat an average of two cookies apiece. Walter and Gretel are baking Bonnie's Best Bar Cookies this year. Their recipe, which makes a pan of 15 cookies, lists this items: $1\frac{1}{2}$ cups of flour, $2$ eggs, $3$ tablespoons butter, $\frac{3}{4}$ cups sugar, and $1$ package of chocolate drops. They will make only full recipes, not partial recipes.

Walter can buy eggs by the half-dozen. How many half-dozens should he buy to make enough cookies? (Some eggs and some cookies may be left over.)

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 15$

Solution

If $108$ students eat $2$ cakes on average, there will need to be $108\cdot 2 = 216$ cakes. There are $15$ cakes per pan, meaning there needs to be $\frac{216}{15} = 14.4$ pans. However, since half-recipes are forbidden, we need to round up and make $\lceil \frac{216}{15}\rceil = 15$ pans.

$1$ pan requires $2$ eggs, so $15$ pans require $2\cdot 15 = 30$ eggs. Since there are $6$ eggs in a half dozen, we need $\frac{30}{6} = 5$ half-dozens of eggs, and the answer is $\boxed{C}$


See Also

1999 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination