1984 AHSME Problems/Problem 3
Problem
Let
be the smallest nonprime integer greater than
with no prime factor less than
. Then
Solution
To solve the problem, you would have to find the smallest prime number greater than ten: eleven. So, the smallest number with eleven as prime factorization and greater than 100 = 11^2 (i.e. 121). Which is in
.
See Also
| 1984 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing