2007 AMC 12B Problems/Problem 23
Problem 23
How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to
times their perimeters?
Solution
Let
and
be the two legs of the triangle.
We have
.
Then
.
We can complete the square under the root, and we get,
.
Let
and
, we have
.
After rearranging, squaring both sides, and simplifying, we have
.
Putting back
and
, and after factoring using
, we've got
.
Factoring 72, we get 6 pairs of
and
And this gives us
solutions
.
Solution #2
We will proceed by using the fact that
, where
is the radius of the incircle and
is the semiperimeter (
).
We are given
.
The incircle of ABC breaks the triangle's sides into segments such that
,
and
. Since ABC is a triangle, one of
,
and
is equal to its radius, 6. Let's assume
.
The side lengths then become
,
and
. Plugging into Pythagorean's theorem:
(x + y)^2 = (x+6)^2 + (y + 6)^2
x^2 + 2xy + y^2 = x^2 + 12x + 36 + y^2 + 12y + 36
2xy - 12x - 12y = 72
xy - 6x - 6y = 36
(x - 6)(y - 6) - 36 = 36
(x - 6)(y - 6) = 72
so it has
factors, meaning
and
can take on 12 values. But for each pair of factors that multiply to 72, they produce one distinct triangle. Thus, the number of right triangles ABC that satisfy the given condition is
A.
See Also
| 2007 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 22 |
Followed by Problem 24 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination