2012 IMO Problems/Problem 4
Find all functions
such that, for all integers
and
that satisfy
, the following equality holds:
(Here
denotes the set of integers.)
Solution
Consider
Then
Now we look at
We can write
If
, then
Case 1:
Case 2:
, we will have
or
Case 2.1:
if
is odd,
if
is even.
Case 2.2:
or
Case 2.2.1:
and
or
and
or
Case 2.2.2:
or
and
or
If
then
We will prove by induction
If
then
is true for some
.
and if the statement is true for
or
and
or
the statement is true for
as well.