Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2013 AMC 8 Problems/Problem 13

Revision as of 20:19, 27 November 2013 by Fadebekun (talk | contribs) (Solution)

Problem

When Clara totaled her scores, she inadvertently reversed the units digit and the tens digit of one score. By which of the following might her incorrect sum have differed from the correct one?

$\textbf{(A)}\ 45 \qquad \textbf{(B)}\ 46 \qquad \textbf{(C)}\ 47 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 49$

Solution

Let the two digits be $\text{ab}$.

The correct score was $10a+b$. Clara misinterpreted it as $10b+a$. The difference between the two is $|9a-9b|$ which factors into $|9(a-b)|$. Therefore, the difference is a multiple of 9, the only answer choice that is a multiple of 9 is $\boxed{\textbf{(A)}\ 45}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination