1986 IMO Problems/Problem 2
Given a point
in the plane of the triangle
. Define
for all
. Construct a set of points
such that
is the image of
under a rotation center
through an angle
clockwise for
. Prove that if
, then the triangle
is equilateral.
Solution
Consider the triangle and the points on the complex plane. Without loss of generality, let
,
, and
for some complex number
. Then, a rotation about
of
sends point
to point
. For
, the rotation sends
to
and for
the rotation sends
to
. Thus the result of all three rotations sends
to
Since the transformation
occurs
times, to obtain
. But, we have
and so we have
Now it is clear that the triangle
is equilateral.
Shen kislay kai
See Also
| 1986 IMO (Problems) • Resources | ||
| Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
| All IMO Problems and Solutions | ||