2023 IMO Problems/Problem 2
Problem
Let
be an acute-angled triangle with
. Let
be the circumcircle of
. Let
be the midpoint of the arc
of
containing
. The perpendicular from
to
meets
at
and meets
again at
. The line through
parallel to
meets line
at
. Denote the circumcircle of triangle
by
. Let
meet
again at
. Prove that the line tangent to
at
meets line
on the internal angle bisector of
.
Solution
Denote the point diametrically opposite to a point
through
is the internal angle bisector of
.
Denote the crosspoint of
and
through
To finishing the solution we need only to prove that
Denote
is incenter of
Denote
is the orthocenter of
Denote
and
are concyclic.
points
and
are colinear
is symmetric to
with respect
We use the lemma and complete the proof.
Solutions
https://www.youtube.com/watch?v=JhThDz0H7cI [Video contains solutions to all day 1 problems]