Art of Problem Solving

1999 AIME Problems/Problem 15

Revision as of 19:32, 3 November 2007 by Minsoens (talk | contribs)

Problem

Consider the paper triangle whose vertices are $(0,0), (34,0),$ and $(16,24).$ The vertices of its midpoint triangle are the midpoints of its sides. A triangular pyramid is formed by folding the triangle along the sides of its midpoint triangle. What is the volume of this pyramid?

Solution

Let $D$, $E$, $F$ be the foots of the altitudes of sides $BC$, $CA$, $AB$, respectively, of $\triangle ABC$. The base of the tetrahedron is the orthocenter $O$ of the large triangle, so we just need to find that, then it's easy from there.

To find the coordinates of $O$, we wish to find the intersection point of altitudes $BE$ and $AD$. The equation of $BE$ is just $x=16$ . $AD$ is perpendicular to the line $BC$, so the slope of $AD$ is equal to the negative reciprocal of the slope of $BC$. $BC$ has slope $\frac{24-0}{16-34}=-\frac{4}{3}$, therefore $y=\dfrac{3}{4} x$. These two equations intersect at $(16,12)$, so that's the base of the height of the tetrahedron.

Let $S$ be the foot of altitude $BS$ in $\triangle BPQ$. From the pythagorean theorem, $h=\sqrt{BS^2-SO^2}$. However, since $S$ and $O$ are, by coincidence, the same point, $SO=0$ and $h=12$.

And the area of the base is 104, so the volume is

$\dfrac{104*12}{3}=\boxed{408}$

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Final Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions