2021 AMC 10B Problems/Problem 21
Problem
A square piece of paper has side length
and vertices
and
in that order. As shown in the figure, the paper is folded so that vertex
meets edge
at point
, and edge
at point
. Suppose that
. What is the perimeter of triangle
\* Made by samrocksnature *\
pair A=(0,1);
pair CC=(0.666666666666,1);
pair D=(1,1);
pair F=(1,0.62);
pair C=(1,0);
pair B=(0,0);
pair G=(0,0.25);
pair H=(-0.13,0.41);
pair E=(0,0.5);
dot(A^^CC^^D^^C^^B^^E);
draw(E--A--D--F);
draw(G--B--C--F, dashed);
fill(E--CC--F--G--H--E--CC--cycle, gray);
draw(E--CC--F--G--H--E--CC);
label("A",A,NW);
label("B",B,SW);
label("C",C,SE);
label("D",D,NE);
label("E",E,NW);
label("C",CC,N);
(Error making remote request. Unknown error_msg)
Solution (Quicksolve)
Assume that E is the midpoint of
. Then,
and since
,
. By the Pythagorean Theorem,
. It easily follows that our desired perimeter is
~samrocksnature