2020 AIME I Problems
| 2020 AIME I (Answer Key) | AoPS Contest Collections • PDF | ||
|
Instructions
| ||
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
Problem 1
In
with
point
lies strictly between
and
on side
and point
lies strictly between
and
on side
such that
The degree measure of
is
where
and
are relatively prime positive integers. Find
Problem 2
There is a unique positive real number
such that the three numbers
and
in that order, form a geometric progression with positive common ratio. The number
can be written as
where
and
are relatively prime positive integers. Find
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
| 2020 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by 2019 AIME II |
Followed by 2020 AIME II | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination