1972 IMO Problems/Problem 3
Let
and
be arbitrary non-negative integers. Prove that
is an integer. (
.)
Solution
Let
. We intend to show that
is integral for all
. To start, we would like to find a recurrence relation for
.
First, let's look at
:
Second, let's look at
:
Combining,
.
Therefore, we have found the recurrence relation
.
We can see that
is integral because the RHS is just
, which we know to be integral for all
.
So,
must be integral, and then
must be integral, etc.
By induction,
is integral for all
.
Borrowed from http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln723.html