1972 IMO Problems/Problem 3: Difference between revisions
| Line 17: | Line 17: | ||
Combining, | Combining, | ||
<math>4f(m,n-1)-f(m+1,n-1)=f(m,n) (\frac{4(m+n | <math>4f(m,n-1)-f(m+1,n-1)=f(m,n) (\frac{4(m+n)}{2(2n-1)}-\frac{2m+1}{2n-1})=f(m,n) \frac{2m+2n-2m-1}{2n-1}=f(m,n)</math>. | ||
Therefore, we have found the recurrence relation <math>f(m,n)=4f(m,n-1)-f(m+1,n-1)</math>. | Therefore, we have found the recurrence relation <math>f(m,n)=4f(m,n-1)-f(m+1,n-1)</math>. | ||
Revision as of 19:12, 21 November 2018
Let
and
be arbitrary non-negative integers. Prove that
is an integer. (
.)
Solution 1
Let
. We intend to show that
is integral for all
. To start, we would like to find a recurrence relation for
.
First, let's look at
:
Second, let's look at
:
Combining,
.
Therefore, we have found the recurrence relation
.
We can see that
is integral because the RHS is just
, which we know to be integral for all
.
So,
must be integral, and then
must be integral, etc.
By induction,
is integral for all
.
Borrowed from http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln723.html
Solution 2
Let p be a prime, and n be an integer. Let
be the largest positive integer
such that
WTS: For all primes
,
We know
Lemma 2.1: Let
be real numbers. Then
Proof of Lemma 2.1: Let
and
On the other hand,
It is trivial that
Apply Lemma 2.1 to the problem: and we are pretty much done.
Note: I am lazy, so this is only the most important part. I hope you can come up with the rest of the solution. This is my work, but perhaps someone have come up with this method before I did.