Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2018 AMC 8 Problems/Problem 10: Difference between revisions

Ben chen (talk | contribs)
No edit summary
Ben chen (talk | contribs)
mNo edit summary
Line 5: Line 5:


==Solution==
==Solution==
The sum of the reciprocals is <math>\frac 11 + \frac 12 + \frac 14= \frac 74</math>. Their average is <math>\frac 7{12}</math>. Thus our answer is <math>\boxed{\textbf{(C) }\frac{12}{7}}</math>
The sum of the reciprocals is <math>\frac 11 + \frac 12 + \frac 14= \frac 74</math>. Their average is <math>\frac 7{12}</math>. Thus our answer is <math>\boxed{\textbf{(C) }\frac{12}{7}}</math>


==See Also==
{{AMC8 box|year=2018|num-b=9|num-a=11}}
{{AMC8 box|year=2018|num-b=9|num-a=11}}
{{MAA Notice}}

Revision as of 18:53, 21 November 2018

Problem 10

The harmonic mean of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and 4?

$\textbf{(A) }\frac{3}{7}\qquad\textbf{(B) }\frac{7}{12}\qquad\textbf{(C) }\frac{12}{7}\qquad\textbf{(D) }\frac{7}{4}\qquad \textbf{(E) }\frac{7}{3}$

Solution

The sum of the reciprocals is $\frac 11 + \frac 12 + \frac 14= \frac 74$. Their average is $\frac 7{12}$. Thus our answer is $\boxed{\textbf{(C) }\frac{12}{7}}$

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination