1981 AHSME Problems/Problem 3: Difference between revisions
| Line 1: | Line 1: | ||
==Solution== | ==Solution== | ||
The least common multiple of <math>\frac{1}{x}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>. | The least common multiple of <math>\displaystyle{\frac{1}{x}}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>. | ||
<math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>. | <math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>. | ||
Revision as of 15:08, 21 November 2018
Solution
The least common multiple of
,
, and
is
.
=
,
=
,
=
.
+
+
=
The answer is (D)
.