Art of Problem Solving

1981 AHSME Problems/Problem 3: Difference between revisions

Hong2021 (talk | contribs)
Hong2021 (talk | contribs)
Line 1: Line 1:
==Solution==
==Solution==


The least common multiple of <math>\frac{1}{x}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>.  
The least common multiple of <math>\displaystyle{\frac{1}{x}}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>.  


<math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>.
<math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>.

Revision as of 15:08, 21 November 2018

Solution

The least common multiple of $\displaystyle{\frac{1}{x}}$, $\frac{1}{2x}$, and $\frac{1}{3x}$ is $\frac{1}{6x}$.

$\frac{1}{x}$ = $\frac{6}{6x}$, $\frac{1}{2x}$ = $\frac{3}{6x}$, $\frac{1}{3x}$ = $\frac{2}{6x}$.

$\frac{6}{6x}$ + $\frac{3}{6x}$ + $\frac{2}{6x}$ = $\frac{11}{6x}$

The answer is (D) $\frac{11}{6x}$.