Ostrowski's criterion: Difference between revisions
Ostrowski's Criterion |
mNo edit summary |
||
| Line 5: | Line 5: | ||
then <math>f(x)</math> is irreducible. | then <math>f(x)</math> is irreducible. | ||
Proof | ==Proof== | ||
Let <math>\phi</math> be a root of <math>f(x)</math>. If <math>|\phi|\leq 1</math>, then | |||
<cmath>|a_0|=|a_1\phi+\cdots+a_n\phi^n|\leq |a_1|+\cdots+|a_n|</cmath> | <cmath>|a_0|=|a_1\phi+\cdots+a_n\phi^n|\leq |a_1|+\cdots+|a_n|</cmath> | ||
a contradiction. Therefore, <math>|\phi|>1</math>. | a contradiction. Therefore, <math>|\phi|>1</math>. | ||
Revision as of 15:30, 14 August 2018
Ostrowski's Criterion states that:
Left
. If
is a prime and
then
is irreducible.
Proof
Let
be a root of
. If
, then
a contradiction. Therefore,
.
Suppose
. Since
, one of
and
is 1. WLOG, assume
. Then, let
be the leading coefficient of
. If
are the roots of
, then
. This is a contradiction, so
is irreducible.
This article is a stub. Help us out by expanding it.