2007 iTest Problems/Problem 58: Difference between revisions
Created page with "== Problem == Let <math>T=\text{TNFTPP}</math>. For natural numbers <math>k,n\geq 2</math>, we define <cmath>S(k,n)=\left\lfloor\frac{2^{n+1}+1}{2^{n-1}+1}\right\rfloor+\left\lfl..." |
Rockmanex3 (talk | contribs) Solution to Problem 58 — fun problem! |
||
| Line 1: | Line 1: | ||
== Problem == | ''The following problem is from the Ultimate Question of the [[2007 iTest]], where solving this problem required the answer of a previous problem. When the problem is rewritten, the T-value is substituted.'' | ||
==Problem== | |||
For natural numbers <math>k,n\geq 2</math>, we define | |||
<cmath>S(k,n)=\left\lfloor\frac{2^{n+1}+1}{2^{n-1}+1}\right\rfloor+\left\lfloor\frac{3^{n+1}+1}{3^{n-1}+1}\right\rfloor+\cdots+\left\lfloor\frac{k^{n+1}+1}{k^{n-1}+1}\right\rfloor</cmath> | <cmath>S(k,n)=\left\lfloor\frac{2^{n+1}+1}{2^{n-1}+1}\right\rfloor+\left\lfloor\frac{3^{n+1}+1}{3^{n-1}+1}\right\rfloor+\cdots+\left\lfloor\frac{k^{n+1}+1}{k^{n-1}+1}\right\rfloor</cmath> | ||
Compute the value of <math>S(10, | Compute the value of <math>S(10,112)-S(10,55)+S(10,2)</math>. | ||
==Solution== | |||
The function <math>S(k,n)</math> can be rewritten as | |||
<cmath>\sum_{j=2}^{k} \left\lfloor\frac{j^{n+1}+1}{j^{n-1}+1}\right\rfloor</cmath> | |||
Let <math>x = j^{n-1}</math>. With the substitution, each similar part becomes | |||
<cmath>\sum_{j=2}^{k} \left\lfloor\frac{j^2 \cdot x+1}{x+1}\right\rfloor</cmath> | |||
Performing polynomial division results in | |||
<cmath>\sum_{j=2}^{k} \left\lfloor j^2 + \frac{1 - j^2}{x+1}\right\rfloor</cmath> | |||
<cmath>\sum_{j=2}^{k} \left\lfloor j^2 - \frac{j^2 - 1}{j^{n-1}+1}\right\rfloor</cmath> | |||
When <math>n = 112</math> or <math>n = 55</math>, then <math>\frac{j^2 - 1}{j^{n-1}+1}</math> is close to zero, which means that <math>\left\lfloor j^2 - \frac{j^2 - 1}{j^{n-1}+1}\right\rfloor</math> would be the same for a given <math>j</math> when <math>n = 112</math> or <math>n = 55</math>. Thus, <math>S(10,112) - S(10,55) = 0</math>. | |||
<br> | |||
That means <math>S(10,112) - S(10,55) + S(10,2) = S(10,2)</math>, and that equals | |||
<cmath>\sum_{j=2}^{10} \left\lfloor j^2 - \frac{j^2 - 1}{j+1}\right\rfloor</cmath> | |||
<cmath>\sum_{j=2}^{10} \left\lfloor j^2 - (j-1) \right\rfloor</cmath> | |||
<cmath>\sum_{j=2}^{10} j^2 - \sum_{j=2}^{10} j-1</cmath> | |||
<cmath>(4+9 \cdots 100) - (1+2 \cdots 9)</cmath> | |||
<cmath>(\frac{10 \cdot 11 \cdot 21}{6} - 1) - (\frac{10 \cdot 9}{2}</cmath> | |||
<cmath>384-45</cmath> | |||
<cmath>\boxed{339}</cmath> | |||
==See Also== | |||
{{iTest box|year=2007|num-b=57|num-a=59}} | |||
[[Category:Intermediate Algebra Problems]] | |||
Revision as of 12:03, 30 June 2018
The following problem is from the Ultimate Question of the 2007 iTest, where solving this problem required the answer of a previous problem. When the problem is rewritten, the T-value is substituted.
Problem
For natural numbers
, we define
Compute the value of
.
Solution
The function
can be rewritten as
Let
. With the substitution, each similar part becomes
Performing polynomial division results in
When
or
, then
is close to zero, which means that
would be the same for a given
when
or
. Thus,
.
That means
, and that equals
See Also
| 2007 iTest (Problems, Answer Key) | ||
| Preceded by: Problem 57 |
Followed by: Problem 59 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 | ||