1974 USAMO Problems/Problem 2: Difference between revisions
No edit summary |
|||
| Line 59: | Line 59: | ||
==Solution 4== | ==Solution 4== | ||
WLOG let <math>a\ge b\ge c</math>. Then sequence <math>(a,b,c)</math> majorizes <math>(\frac{a+b+c}{3},\frac{a+b+c}{3},\frac{a+b+c}{3})</math>. Thus by Muirhead's Inequality, we have <math>\sum_{sym} a^ab^bc^c \ge \sum_{sym} a^{\frac{a+b+c}{3}}b^{\frac{a+b+c}{3}}c^{\frac{a+b+c}{3}}</math>, so <math>a^ab^bc^c \ge (abc)^{\frac{a+b+c}{3}}</math>. | WLOG let <math>a\ge b\ge c</math>. Then sequence <math>(a,b,c)</math> majorizes <math>(\frac{a+b+c}{3},\frac{a+b+c}{3},\frac{a+b+c}{3})</math>. Thus by Muirhead's Inequality, we have <math>\sum_{sym} a^ab^bc^c \ge \sum_{sym} a^{\frac{a+b+c}{3}}b^{\frac{a+b+c}{3}}c^{\frac{a+b+c}{3}}</math>, so <math>a^ab^bc^c \ge (abc)^{\frac{a+b+c}{3}}</math>. | ||
==Solution 5== | |||
Let <math>x=\frac{a}{\sqrt[3]{abc}},</math> <math>y=\frac{b}{\sqrt[3]{abc}}</math> and <math>z=\frac{c}{\sqrt[3]{abc}}.</math> Then <math>xyz=1</math> and a straightforward calculation reduces the problem to | |||
<cmath>x^xy^yz^z \ge 1.</cmath> | |||
WLOG, assume <math>x\ge y\ge z.</math> Then <math>x\ge 1,</math> <math>z\le 1</math> and <math>xy=\frac{1}{z} \ge 1.</math> Therefore, | |||
<cmath> x^xy^yz^z=x^{x-y}(xy)^{y-z}(xyz)^z \ge 1.</cmath> | |||
J.Z. | |||
{{alternate solutions}} | {{alternate solutions}} | ||
Revision as of 13:57, 16 May 2018
Problem
Prove that if
,
, and
are positive real numbers, then
Solution 1
Consider the function
.
for
; therefore, it is a convex function and we can apply Jensen's Inequality:
Apply AM-GM to get
which implies
Rearranging,
Because
is an increasing function, we can conclude that:
which simplifies to the desired inequality.
Solution 2
Note that
.
So if we can prove that
and
, then we are done.
WLOG let
.
Note that
. Since
,
,
, and
, it follows that
.
Note that
. Since
,
,
, and
, it follows that
.
Thus,
, and cube-rooting both sides gives
as desired.
Solution 3
WLOG let
. Let
and
, where
and
.
We want to prove that
.
Simplifying and combining terms on each side, we get
.
Since
, we can divide out
to get
.
Take the
th root of each side and then cube both sides to get
.
This simplifies to
.
Since
and
, we only need to prove
for our given
.
WLOG, let
and
for
. Then our expression becomes
This is clearly true for
.
Solution 4
WLOG let
. Then sequence
majorizes
. Thus by Muirhead's Inequality, we have
, so
.
Solution 5
Let
and
Then
and a straightforward calculation reduces the problem to
WLOG, assume
Then
and
Therefore,
J.Z.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
| 1974 USAMO (Problems • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
- Simple Olympiad Inequality
- Hard inequality
- Inequality
- Some q's on usamo write ups
- ineq
- exponents (generalization)
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing