Art of Problem Solving

2018 AIME I Problems/Problem 12: Difference between revisions

Math101010 (talk | contribs)
mNo edit summary
Specialbeing2017 (talk | contribs)
Line 4: Line 4:
==Solution 1==
==Solution 1==
Rewrite the set after mod3
Rewrite the set after mod3
1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
All 0s can be omitted  
All 0s can be omitted  
Case 1
Case 1
No 1 No 2
No 1 No 2
1
1
Case 2
Case 2
222
222
20
20
Case 3
Case 3
222222
222222
1
1
Case 4
Case 4
12
12
6*6=36
6*6=36
Case 5
Case 5
12222
12222
6*15=90
6*15=90
Case 6
Case 6
1122
1122
15*15=225
15*15=225
Case 7
Case 7
1122222
1122222
15*6=90
15*6=90
Case 8
Case 8
111
111
20
20
Case 9
Case 9
111222
111222
20*20=400
20*20=400
Case 10
Case 10
111222222
111222222
20
20
Case 11
Case 11
11112
11112
15*6=90
15*6=90
Case 12
Case 12
11112222
11112222
15*15=225
15*15=225
Case 13
Case 13
1111122
1111122
6*15=90
6*15=90
Case 14
Case 14
1111122222
1111122222
6*6=36
6*6=36
Case 15
Case 15
111111
111111
1
1
Case 16
Case 16
111111222
111111222
20
20
Case 17
Case 17
111111222222
111111222222
1
1
Total 1+20+1+36+90+225+90+20+400+20+90+225+90+36+1+20+1=484+360+450+72=1366
Total 1+20+1+36+90+225+90+20+400+20+90+225+90+36+1+20+1=484+360+450+72=1366
P=1362/2^12=683/2^11
P=1362/2^12=683/2^11
ANS=683
ANS=683


==Solution 2==
==Solution 2==

Revision as of 21:01, 9 March 2018

Problem

For every subset $T$ of $U = \{ 1,2,3,\ldots,18 \}$, let $s(T)$ be the sum of the elements of $T$, with $s(\emptyset)$ defined to be $0$. If $T$ is chosen at random among all subsets of $U$, the probability that $s(T)$ is divisible by $3$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.

Solution 1

Rewrite the set after mod3

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

All 0s can be omitted

Case 1 No 1 No 2 1

Case 2 222 20

Case 3 222222 1

Case 4 12 6*6=36

Case 5 12222 6*15=90

Case 6 1122 15*15=225

Case 7 1122222 15*6=90

Case 8 111 20

Case 9 111222 20*20=400

Case 10 111222222 20

Case 11 11112 15*6=90

Case 12 11112222 15*15=225

Case 13 1111122 6*15=90

Case 14 1111122222 6*6=36

Case 15 111111 1

Case 16 111111222 20

Case 17 111111222222 1

Total 1+20+1+36+90+225+90+20+400+20+90+225+90+36+1+20+1=484+360+450+72=1366

P=1362/2^12=683/2^11

ANS=683

Solution 2

Consider the numbers {1,4,7,10,13,16}. Each of those are congruent to 1mod3. There is ${6 \choose 0}=1$ way to choose zero numbers ${6 \choose 1}=6$ ways to choose 1 and so on. There ends up being ${6 \choose 0}+{6 \choose 3}+{6 \choose 6}$ possible subsets congruent to 0mod 3. There are $2^6=64$ possible subsets of these numbers.

Solution 3

Notice that six numbers are $0\pmod3$, six are $1\pmod3$, and six are $2\pmod3$. Having numbers $0\pmod3$ will not change the remainder when $s(T)$ is divided by $3$, so we can choose any number of these in our subset. We ignore these for now. The number of numbers that are $1\pmod3$, minus the number of numbers that are $2\pmod3$, must be a multiple of $3$, possibly zero or negative. We can now split into cases based on how many numbers that are $1\pmod3$ are in the set.

Case 1- $0$, $3$, or $6$ integers: There can be $0$, $3$, or $6$ integers that are $2\pmod3$. We can choose these in $\left(\binom60+\binom63+\binom66\right)\cdot\left(\binom60+\binom63+\binom66\right)=(1+20+1)^2=484$ ways.

Case 2- $1$ or $4$ integers: There can be $2$ or $5$ integers that are $2\pmod3$. We can choose these in $\left(\binom61+\binom64\right)\cdot\left(\binom62+\binom65\right)=(6+15)^2=441$ ways.

Case 3- $2$ or $5$ integers: There can be $1$ or $4$ integers that are $2\pmod3$. We can choose these in $\left(\binom62+\binom65\right)\cdot\left(\binom61+\binom64\right)=(15+6)^2=441$ ways.

Adding these up, we get that there are $1366$ ways to choose the numbers such that their sum is a multiple of three. Putting back in the possibility that there can be multiples of $3$ in our set, we have that there are $1366\cdot\left(\binom60+\binom61+\binom62+\binom63+\binom64+\binom65+\binom66+\right)=1366\cdot2^6$ subsets $T$ with a sum that is a multiple of $3$. Since there are $2^{18}$ total subsets, the probability is $\frac{1366\cdot2^6}{2^{18}}=\frac{683}{2^{11}}$, so the answer is $\boxed{683}$.

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing