2015 AIME I Problems/Problem 7: Difference between revisions
Bluelinfish (talk | contribs) m →Problem |
|||
| Line 1: | Line 1: | ||
==Problem== | ==Problem 7== | ||
In the diagram below, <math>ABCD</math> is a square. Point <math>E</math> is the midpoint of <math>\overline{AD}</math>. Points <math>F</math> and <math>G</math> lie on <math>\overline{CE}</math>, and <math>H</math> and <math>J</math> lie on <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, so that <math>FGHJ</math> is a square. Points <math>K</math> and <math>L</math> lie on <math>\overline{GH}</math>, and <math>M</math> and <math>N</math> lie on <math>\overline{AD}</math> and <math>\overline{AB}</math>, respectively, so that <math>KLMN</math> is a square. The area of <math>KLMN</math> is 99. Find the area of <math>FGHJ</math>. | |||
<asy> | <asy> | ||
Revision as of 20:35, 19 February 2018
Problem 7
In the diagram below,is a square. Point
is the midpoint of
. Points
and
lie on
, and
and
lie on
and
, respectively, so that
is a square. Points
and
lie on
, and
and
lie on
and
, respectively, so that
is a square. The area of
is 99. Find the area of
.
Solution
We begin by denoting the length
, giving us
and
. Since angles
and
are complementary, we have that
(and similarly the rest of the triangles are
triangles). We let the sidelength of
be
, giving us:
and
.
Since
,
,
Solving for
in terms of
yields
.
We now use the given that
, implying that
. We also draw the perpendicular from
to
and label the point of intersection
:
This gives that
and
Since
=
, we get
So our final answer is
See also
| 2015 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing