2018 AMC 10B Problems/Problem 24: Difference between revisions
| Line 18: | Line 18: | ||
E=(0,0); | E=(0,0); | ||
F=(-1/2,sqrt(3)/2); | F=(-1/2,sqrt(3)/2); | ||
X=(1/2, sqrt(3)); | |||
Y=(5/4, sqrt(3)/4); | |||
Z=(-1/2, sqrt(3)/4); | |||
draw(A--B--C--D--E--F--cycle); | draw(A--B--C--D--E--F--cycle); | ||
draw(A--C--E); | |||
draw(X--Y--Z); | |||
label("$A$",A,NW); | label("$A$",A,NW); | ||
| Line 27: | Line 33: | ||
label("$E$",E,SW); | label("$E$",E,SW); | ||
label("$F$",F,WSW); | label("$F$",F,WSW); | ||
label("$X$", X, N); | |||
label("$Y$", Y, ESE); | |||
label("$Z$", Z, WSW); | |||
</asy> | </asy> | ||
Revision as of 16:34, 16 February 2018
Problem
Let
be a regular hexagon with side length
. Denote
,
, and
the midpoints of sides
,
, and
, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of
and
?
Answer:
Solution
See Also
| 2018 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 23 |
Followed by Problem 25 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2018 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing