2005 AMC 10A Problems/Problem 21: Difference between revisions
added problem and solution |
mNo edit summary |
||
| Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
If <math> 1+2+...+n </math> evenly | If <math> 1+2+...+n </math> evenly [[divide]]s <math>6n</math>, then <math>\frac{6n}{1+2+...+n}</math> is an [[integer]]. | ||
Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above fraction. | Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above [[fraction]]. | ||
So the problem asks us for how many | So the problem asks us for how many [[postive integer]]s <math>n</math> is <math>\frac{6n}{\frac{n(n+1)}{2}}=\frac{12}{n+1}</math> an integer. | ||
<math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[factor]] of <math>12</math>. | <math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[factor]] of <math>12</math>. | ||
| Line 17: | Line 17: | ||
So the possible values of <math>n</math> are <math>0</math>, <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math>. | So the possible values of <math>n</math> are <math>0</math>, <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math>. | ||
But <math>0</math> isn't a positive integer | But <math>0</math> isn't a positive integer, so only <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math> are possible values of <math>n</math>. | ||
Therefore the number of possible values of <math>n</math> is <math>5\ | Therefore the number of possible values of <math>n</math> is <math>5\Longrightarrow \mathrm{(B)}</math> | ||
==See Also== | ==See Also== | ||
Revision as of 15:35, 2 August 2006
Problem
For how many positive integers
does
evenly divide
?
Solution
If
evenly divides
, then
is an integer.
Since
we may substitute the RHS in the above fraction.
So the problem asks us for how many postive integers
is
an integer.
is an integer when
is a factor of
.
The factors of
are
,
,
,
,
, and
.
So the possible values of
are
,
,
,
,
, and
.
But
isn't a positive integer, so only
,
,
,
, and
are possible values of
.
Therefore the number of possible values of
is