2005 AMC 10A Problems/Problem 4: Difference between revisions
added problem and solution |
wikification |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
A rectangle with a diagonal of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle? | A rectangle with a [[diagonal]] of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle? | ||
<math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math> | <math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math> | ||
==Solution== | ==Solution== | ||
Let the width of the rectangle be <math>w</math>. | Let the width of the rectangle be <math>w</math>. Then the length is <math>2w</math> | ||
Then the length is <math>2w</math> | |||
Using the [[Pythagorean Theorem]]: | Using the [[Pythagorean Theorem]]: | ||
<math> | <math>x^{2}=w^{2}+(2w)^{2}</math> | ||
<math>x^{2}=5w^{2}</math> | <math>x^{2}=5w^{2}</math> | ||
| Line 19: | Line 17: | ||
<math>2w=\frac{2x}{\sqrt{5}}</math> | <math>2w=\frac{2x}{\sqrt{5}}</math> | ||
So the area of the rectangle is <math> w \cdot 2w = \frac{x}{\sqrt{5}} \cdot \frac{2x}{\sqrt{5}} = \frac{2}{5}x^{2} \ | So the [[area]] of the [[rectangle]] is <math> w \cdot 2w = \frac{x}{\sqrt{5}} \cdot \frac{2x}{\sqrt{5}} = \frac{2}{5}x^{2} \Longrightarrow \mathrm{(B)}</math> | ||
==See Also== | ==See Also== | ||
*[[2005 AMC 10A Problems]] | *[[2005 AMC 10A Problems]] | ||
| Line 26: | Line 24: | ||
*[[2005 AMC 10A Problems/Problem 5|Next Problem]] | *[[2005 AMC 10A Problems/Problem 5|Next Problem]] | ||
[[Category:Introductory Geometry Problems]] | |||
Revision as of 09:37, 2 August 2006
Problem
A rectangle with a diagonal of length
is twice as long as it is wide. What is the area of the rectangle?
Solution
Let the width of the rectangle be
. Then the length is
Using the Pythagorean Theorem:
So the area of the rectangle is