2012 AMC 10A Problems/Problem 17: Difference between revisions
Ilearnmath (talk | contribs) |
Ilearnmath (talk | contribs) |
||
| Line 5: | Line 5: | ||
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math> | <math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math> | ||
== Solution 1 == | == Solution 1(The not so good solution) == | ||
Since <math>a</math> and <math>b</math> are relatively prime, <math>a^3-b^3</math> and <math>(a-b)^3</math> are both integers as well. Then, for the given fraction to simplify to <math>\frac{73}{3}</math>, the denominator <math>(a-b)^3</math> must be a multiple of <math>3.</math> Thus, <math>a-b</math> is a multiple of <math>3</math>. Looking at the answer choices, the only multiple of <math>3</math> is <math>\boxed{\textbf{(C)}\ 3}</math>. | Since <math>a</math> and <math>b</math> are relatively prime, <math>a^3-b^3</math> and <math>(a-b)^3</math> are both integers as well. Then, for the given fraction to simplify to <math>\frac{73}{3}</math>, the denominator <math>(a-b)^3</math> must be a multiple of <math>3.</math> Thus, <math>a-b</math> is a multiple of <math>3</math>. Looking at the answer choices, the only multiple of <math>3</math> is <math>\boxed{\textbf{(C)}\ 3}</math>. | ||
Revision as of 17:48, 4 September 2017
Problem
Let
and
be relatively prime integers with
and
=
. What is
?
Solution 1(The not so good solution)
Since
and
are relatively prime,
and
are both integers as well. Then, for the given fraction to simplify to
, the denominator
must be a multiple of
Thus,
is a multiple of
. Looking at the answer choices, the only multiple of
is
.
Solution 2
Using difference of cubes in the numerator and cancelling out one
in the numerator and denominator gives
.
Set
, and
. Then
. Cross multiplying gives
, and simplifying gives
. Since
and
are relatively prime, we let
and
, giving
and
. Since
, the only solution is
, which can be seen upon squaring and summing the various factor pairs of
.
Thus,
.
Remarks:
An alternate method of solving the system of equations involves solving the second equation for
, by plugging it into the first equation, and solving the resulting quartic equation with a substitution of
. The four solutions correspond to
Also, we can solve for
directly instead of solving for
and
:
Note that if you double
and double
, you will get different (but not relatively prime) values for
and
that satisfy the original equation.
Solution 3
The first step is the same as above which gives
.
Then we can subtract
and then add
to get
, which gives
.
.
Cross multiply
. Since
, take the square root.
.
Since
and
are integers and relatively prime,
is an integer.
is a multiple of
, so
is a multiple of
.
Therefore
and
is a solution.
So
See Also
| 2012 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 16 |
Followed by Problem 18 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing