Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

1994 AIME Problems/Problem 8: Difference between revisions

Expilncalc (talk | contribs)
m Solution Two: Fixed grammar and verbosity.
Expilncalc (talk | contribs)
m Solution Two: Removed unnecessary parts
Line 16: Line 16:


== Solution Two ==
== Solution Two ==
Using the Pythagorean theorem doesn't seem promising (you can look at the beastly numbers). It's better to use some properties of equilateral triangles. Thinking about the number <math>\sqrt{3}</math> can lead you down the path of using simple vectors.
Using the Pythagorean theorem doesn't seem promising (you can look at the beastly numbers). It's better to use some properties of equilateral triangles. Thinking about the number <math>\sqrt{3}</math> and looking for perpendiculars gives this solution:
 
First, drop a perpendicular from <math>O</math> to <math>AB</math>. Call this midpoint of <math>AB M</math>. Thus, <math>M=(\frac{a+b}{2}, 24)</math>. The vector from <math>O</math> to <math>M</math> is <math>[\frac{a+b}{2}, 24]</math>. Meanwhile from point <math>M</math> we can use a vector with <math>\frac{\sqrt{3}}{3}</math> the distance; we have to switch the <math>x</math> and <math>y</math> and our displacement is <math>[8\sqrt{3}, \frac{(a+b)\sqrt{3}}{6}]</math>. (Do you see why we switched <math>x</math> and <math>y</math> due to the rotation of 90 degrees?)


First, drop a perpendicular from <math>O</math> to <math>AB</math>. Call this midpoint of <math>AB M</math>. Thus, <math>M=(\frac{a+b}{2}, 24)</math>. Now we can use perpendicularity and slope. That of <math>OM</math> is <math>\frac{48}{a+b}</math>. The vector is <math>[\frac{a+b}{2}, 24]</math>. Meanwhile from point <math>M</math> we can use a vector with <math>\frac{\sqrt{3}}{3}</math> the distance; we have to switch the <math>x</math> and <math>y</math> and our displacement is <math>[8\sqrt{3}, \frac{(a+b)\sqrt{3}}{6}]</math>. (Do you see why we switched <math>x</math> and <math>y</math> due to the rotation of 90 degrees?)


We see this displacement from <math>M</math> to <math>A</math> is <math>[\frac{a-b}{2}, 13]</math> as well. Equating the two vectors, we get <math>a+b=26\sqrt{3}</math> and <math>a-b=16\sqrt{3}</math>. Therefore, <math>a=21\sqrt{3}</math> and <math>b=5\sqrt{3}</math>. And the answer is <math>\boxed{315}</math>.
We see this displacement from <math>M</math> to <math>A</math> is <math>[\frac{a-b}{2}, 13]</math> as well. Equating the two vectors, we get <math>a+b=26\sqrt{3}</math> and <math>a-b=16\sqrt{3}</math>. Therefore, <math>a=21\sqrt{3}</math> and <math>b=5\sqrt{3}</math>. And the answer is <math>\boxed{315}</math>.

Revision as of 16:13, 3 September 2017

Problem

The points $(0,0)\,$, $(a,11)\,$, and $(b,37)\,$ are the vertices of an equilateral triangle. Find the value of $ab\,$.

Solution

Consider the points on the complex plane. The point $b+37i$ is then a rotation of $60$ degrees of $a+11i$ about the origin, so:

\[(a+11i)\left(\text{cis}\,60^{\circ}\right) = (a+11i)\left(\frac 12+\frac{\sqrt{3}i}2\right)=b+37i.\]

Equating the real and imaginary parts, we have:

\begin{align*}b&=\frac{a}{2}-\frac{11\sqrt{3}}{2}\\37&=\frac{11}{2}+\frac{a\sqrt{3}}{2} \end{align*}

Solving this system, we find that $a=21\sqrt{3}, b=5\sqrt{3}$. Thus, the answer is $\boxed{315}$.

Note: There is another solution where the point $b+37i$ is a rotation of $-60$ degrees of $a+11i$; however, this triangle is just a reflection of the first triangle by the $y$-axis, and the signs of $a$ and $b$ are flipped. However, the product $ab$ is unchanged.

Solution Two

Using the Pythagorean theorem doesn't seem promising (you can look at the beastly numbers). It's better to use some properties of equilateral triangles. Thinking about the number $\sqrt{3}$ and looking for perpendiculars gives this solution:

First, drop a perpendicular from $O$ to $AB$. Call this midpoint of $AB M$. Thus, $M=(\frac{a+b}{2}, 24)$. The vector from $O$ to $M$ is $[\frac{a+b}{2}, 24]$. Meanwhile from point $M$ we can use a vector with $\frac{\sqrt{3}}{3}$ the distance; we have to switch the $x$ and $y$ and our displacement is $[8\sqrt{3}, \frac{(a+b)\sqrt{3}}{6}]$. (Do you see why we switched $x$ and $y$ due to the rotation of 90 degrees?)


We see this displacement from $M$ to $A$ is $[\frac{a-b}{2}, 13]$ as well. Equating the two vectors, we get $a+b=26\sqrt{3}$ and $a-b=16\sqrt{3}$. Therefore, $a=21\sqrt{3}$ and $b=5\sqrt{3}$. And the answer is $\boxed{315}$.

Note: This solution was also present in Titu Andreescu and Zuming Feng's "103 Trigonometry Problems".

See also

1994 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination