1993 UNCO Math Contest II Problems/Problem 10: Difference between revisions
Juneseolee (talk | contribs) |
No edit summary |
||
| Line 19: | Line 19: | ||
== Solution == | == Solution == | ||
We will solve both parts at once since it is easy to get the two answers from this all-inclusive solution. | |||
Heron's Formula states that in a triangle with sides <math>a, b, c</math> and <math>s = \frac{a + b + c}{2},</math> the area is given by <cmath>\sqrt{s(s - a)(s - b)(s - c)}.</cmath> We plug in <math>a = 52, b = 53, c = 51.</math> | |||
\begin{align*} | |||
s &= \dfrac{51 + 52 + 53}{2} = \dfrac{3 \cdot 52}{2} = 3 \cdot 26 = 78 \\ | |||
[ABC] &= \sqrt{78(78 - 51)(78 - 52)(78 - 53)} = \sqrt{78(27)(26)(25)} = 5 \sqrt{(3 \cdot 26)\left(3^3\right)(2 \cdot 13)} \\ | |||
&= 5 \cdot 3 \sqrt{3 \cdot 2 \cdot 13 \cdot 3 \cdot 2 \cdot 13} = 15 \sqrt{2^2 \cdot 3^2 \cdot 13^2} = 15 \sqrt{(2 \cdot 3 \cdot 13)}^2 \\ | |||
&= \boxed{1170} | |||
\end{align*} | |||
Since <math>[ABC] = \frac{bh}{2},</math> we know that <math>1170 = \frac{AD \cdot 52}{2} = 26 \cdot AD.</math> Solving, we get <math>AD = 45.</math> Remembering our 8-15-17 Pythagorean triple, we see that <math>BD = \boxed{24}.</math> <math>\square</math> | |||
== See also == | == See also == | ||
Revision as of 15:04, 26 May 2017
Problem
The scalene triangle
has side lengths
is perpendicular to
(a) Determine the length of
(b) Determine the area of triangle
Solution
We will solve both parts at once since it is easy to get the two answers from this all-inclusive solution.
Heron's Formula states that in a triangle with sides
and
the area is given by
We plug in
\begin{align*} s &= \dfrac{51 + 52 + 53}{2} = \dfrac{3 \cdot 52}{2} = 3 \cdot 26 = 78 \\ [ABC] &= \sqrt{78(78 - 51)(78 - 52)(78 - 53)} = \sqrt{78(27)(26)(25)} = 5 \sqrt{(3 \cdot 26)\left(3^3\right)(2 \cdot 13)} \\ &= 5 \cdot 3 \sqrt{3 \cdot 2 \cdot 13 \cdot 3 \cdot 2 \cdot 13} = 15 \sqrt{2^2 \cdot 3^2 \cdot 13^2} = 15 \sqrt{(2 \cdot 3 \cdot 13)}^2 \\ &= \boxed{1170} \end{align*}
Since
we know that
Solving, we get
Remembering our 8-15-17 Pythagorean triple, we see that
See also
| 1993 UNCO Math Contest II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 9 |
Followed by Last Question | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 | ||
| All UNCO Math Contest Problems and Solutions | ||