2010 AIME I Problems/Problem 3: Difference between revisions
No edit summary |
|||
| Line 18: | Line 18: | ||
<center><cmath> y = log_x y^x \Longrightarrow \frac{y}{x} = log_x y = log_x \frac{3}{4}x = \frac{3}{4}</cmath></center> | <center><cmath> y = log_x y^x \Longrightarrow \frac{y}{x} = log_x y = log_x \frac{3}{4}x = \frac{3}{4}</cmath></center> | ||
Where the last two simplifications were made since <math>y = \frac{3}{4}x</math>. Then, | Where the last two simplifications were made since <math>y = \frac{3}{4}x</math>. Then, | ||
<center><cmath>x^{\frac{3}{4}} = \frac{3}{4}x \Longrightarrow x^{\frac{1}{4}} = \frac{4}{3} \Longrightarrow x = (\frac{4}{3})^4</cmath></center> | <center><cmath>x^{\frac{3}{4}} = \frac{3}{4}x \Longrightarrow x^{\frac{1}{4}} = \frac{4}{3} \Longrightarrow x = \left(\frac{4}{3}\right)^4</cmath></center> | ||
Then, <math>y = (\frac{4}{3})^3</math>, and thus: | Then, <math>y = \left(\frac{4}{3}\right)^3</math>, and thus: | ||
<center> <cmath>x+y = (\frac{4}{3})^3 (\frac{4}{3} + 1) = \frac{448}{81} \Longrightarrow 448 + 81 = \boxed{529}</cmath> </center> | <center> <cmath>x+y = \left(\frac{4}{3}\right)^3 \left(\frac{4}{3} + 1 \right) = \frac{448}{81} \Longrightarrow 448 + 81 = \boxed{529}</cmath> </center> | ||
== See Also == | == See Also == | ||
Revision as of 20:17, 11 March 2017
Problem
Suppose that
and
. The quantity
can be expressed as a rational number
, where
and
are relatively prime positive integers. Find
.
Solution
We solve in general using
instead of
. Substituting
, we have:
Dividing by
, we get
.
Taking the
th root,
, or
.
In the case
,
,
,
, yielding an answer of
.
Solution 2
Taking the logarithm base
of both sides, we arrive with:
Where the last two simplifications were made since
. Then,
Then,
, and thus:
See Also
| 2010 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing