2011 AMC 10B Problems/Problem 18: Difference between revisions
Firemage359 (talk | contribs) |
|||
| Line 37: | Line 37: | ||
</center> | </center> | ||
It is given that <math>\angle AMD \ | It is given that <math>\angle AMD \sim \angle CMD</math>. Since <math>\angle AMD</math> and <math>\angle CDM</math> are [[alternate interior angles]] and <math>\overline{AB} \parallel \overline{DC}</math>, <math>\angle AMD \cong \angle CDM \longrightarrow \angle CMD \cong \angle CDM</math>. Use the [[Base Angle Theorem]] to show <math>\overline{DC} \cong \overline{MC}</math>. We know that <math>ABCD</math> is a [[rectangle]], so it follows that <math>\overline{MC} = 6</math>. We notice that <math>\triangle BMC</math> is a <math>30-60-90</math> triangle, and <math>\angle BMC = 30^{\circ}</math>. If we let <math>x</math> be the measure of <math>\angle AMD,</math> then | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
2x + 30 &= 180\\ | 2x + 30 &= 180\\ | ||
Revision as of 13:13, 5 February 2017
Problem
Rectangle
has
and
. Point
is chosen on side
so that
. What is the degree measure of
?
Solution
It is given that
. Since
and
are alternate interior angles and
,
. Use the Base Angle Theorem to show
. We know that
is a rectangle, so it follows that
. We notice that
is a
triangle, and
. If we let
be the measure of
then
See Also
| 2011 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 17 |
Followed by Problem 19 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing