2016 AMC 8 Problems/Problem 5: Difference between revisions
mNo edit summary |
mNo edit summary |
||
| Line 22: | Line 22: | ||
9(8)=72</math> | 9(8)=72</math> | ||
The number <math>72+1=73</math> satisfies both conditions. We subtract the biggest multiple of 11 less than 73 to get the remainder. Thus, <math>73-11(6)=73-66=\boxed{\textbf{(E) }7}</math>. | The number <math>72+1=73</math> satisfies both conditions. We subtract the biggest multiple of <math>11</math> less than <math>73</math> to get the remainder. Thus, <math>73-11(6)=73-66=\boxed{\textbf{(E) }7}</math>. | ||
{{AMC8 box|year=2016|num-b=4|num-a=6}} | {{AMC8 box|year=2016|num-b=4|num-a=6}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 23:13, 27 November 2016
The number
is a two-digit number.
• When
is divided by
, the remainder is
.
• When
is divided by
, the remainder is
.
What is the remainder when
is divided by
?
Solution
From the second bullet point, we know that the second digit must be
. Because there is a remainder of
when it is divided by
, the multiple of
must end in a
. We now look for this one:
The number
satisfies both conditions. We subtract the biggest multiple of
less than
to get the remainder. Thus,
.
| 2016 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination