Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2010 AMC 8 Problems/Problem 12: Difference between revisions

NeilOnnsu (talk | contribs)
No edit summary
Line 3: Line 3:
<math> \textbf{(A)}\ 25\qquad\textbf{(B)}\ 50\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 100\qquad\textbf{(E)}\ 150 </math>
<math> \textbf{(A)}\ 25\qquad\textbf{(B)}\ 50\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 100\qquad\textbf{(E)}\ 150 </math>


==Solution==
==Solution 1==
Since 80 percent of the 500 balls are red, there are 400 red balls. Therefore, there must be 100 blue balls. For the 100 blue balls to be 25% or <math>\dfrac{1}{4}</math> of the bag, there must be 400 balls in the bag so 100 red balls must be removed. The answer is <math>\boxed{\textbf{(D)}\ 100}</math>.
Since 80 percent of the 500 balls are red, there are 400 red balls. Therefore, there must be 100 blue balls. For the 100 blue balls to be 25% or <math>\dfrac{1}{4}</math> of the bag, there must be 400 balls in the bag so 100 red balls must be removed. The answer is <math>\boxed{\textbf{(D)}\ 100}</math>.
==Solution 2==
We could also set up a proportion. Since we know there are 400 red balls, we let the amount of red balls removed be <math>x</math>, so <math>\frac{400-x}{500-x}=\frac{3}{4}</math>. Cross-multiplying gives us <math>1600-4x=1500-3x \implies x=100</math>, so our answer is <math>\boxed{\textbf{(D)}\ 100}</math>.


==See Also==
==See Also==
{{AMC8 box|year=2010|num-b=11|num-a=13}}
{{AMC8 box|year=2010|num-b=11|num-a=13}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 15:46, 7 November 2016

Problem

Of the $500$ balls in a large bag, $80\%$ are red and the rest are blue. How many of the red balls must be removed so that $75\%$ of the remaining balls are red? $\textbf{(A)}\ 25\qquad\textbf{(B)}\ 50\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 100\qquad\textbf{(E)}\ 150$

Solution 1

Since 80 percent of the 500 balls are red, there are 400 red balls. Therefore, there must be 100 blue balls. For the 100 blue balls to be 25% or $\dfrac{1}{4}$ of the bag, there must be 400 balls in the bag so 100 red balls must be removed. The answer is $\boxed{\textbf{(D)}\ 100}$.

Solution 2

We could also set up a proportion. Since we know there are 400 red balls, we let the amount of red balls removed be $x$, so $\frac{400-x}{500-x}=\frac{3}{4}$. Cross-multiplying gives us $1600-4x=1500-3x \implies x=100$, so our answer is $\boxed{\textbf{(D)}\ 100}$.

See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination