2012 AMC 12A Problems/Problem 16: Difference between revisions
Tigershark22 (talk | contribs) |
|||
| Line 62: | Line 62: | ||
label("$A$",y[0],SW); | label("$A$",y[0],SW); | ||
label("$B$",B,SW);</asy> | label("$B$",B,SW);</asy> | ||
Notice that <math>\angle YZO=\angle XZO</math> as they subtend arcs of the same length. Let <math>A</math> be the point of intersection of <math>C_2</math> and <math>XZ</math>. We now have <math>AZ=YZ=7</math> and <math>XA=6</math>. Furthermore, notice that <math>\triangle XAO</math> is isosceles, thus the altitude from <math>O</math> to <math>XA</math> bisects <math> | Notice that <math>\angle YZO=\angle XZO</math> as they subtend arcs of the same length. Let <math>A</math> be the point of intersection of <math>C_2</math> and <math>XZ</math>. We now have <math>AZ=YZ=7</math> and <math>XA=6</math>. Furthermore, notice that <math>\triangle XAO</math> is isosceles, thus the altitude from <math>O</math> to <math>XA</math> bisects <math>XZ</math> at point <math>B</math> above. By the Pythagorean Theorem, <cmath>\begin{align*}BZ^2+BO^2&=OZ^2\\(BA+AZ)^2+OA^2-BA^2&=11^2\\(3+7)^2+r^2-3^2&=121\\r^2&=30\end{align*}</cmath>Thus, <math>r=\sqrt{30}\implies\boxed{\textbf{E}}</math> | ||
== See Also == | == See Also == | ||
Revision as of 21:52, 2 October 2016
Problem
Circle
has its center
lying on circle
. The two circles meet at
and
. Point
in the exterior of
lies on circle
and
,
, and
. What is the radius of circle
?
Solution
Solution 1
Let
denote the radius of circle
. Note that quadrilateral
is cyclic. By Ptolemy's Theorem, we have
and
. Let t be the measure of angle
. Since
, the law of cosines on triangle
gives us
. Again since
is cyclic, the measure of angle
. We apply the law of cosines to triangle
so that
. Since
we obtain
. But
so that
.
.
Solution 2
Let us call the
the radius of circle
, and
the radius of
. Consider
and
. Both of these triangles have the same circumcircle (
). From the Extended Law of Sines, we see that
. Therefore,
. We will now apply the Law of Cosines to
and
and get the equations
,
,
respectively. Because
, this is a system of two equations and two variables. Solving for
gives
.
.
Solution 3
Let
denote the radius of circle
. Note that quadrilateral
is cyclic. By Ptolemy's Theorem, we have
and
. Consider isosceles triangle
. Pulling an altitude to
from
, we obtain
. Since quadrilateral
is cyclic, we have
, so
. Applying the Law of Cosines to triangle
, we obtain
. Solving gives
.
.
-Solution by thecmd999
Solution 4
Let
. Consider an inversion about
. So,
. Using
.
-Solution by IDMasterz
Solution 5
Notice that
as they subtend arcs of the same length. Let
be the point of intersection of
and
. We now have
and
. Furthermore, notice that
is isosceles, thus the altitude from
to
bisects
at point
above. By the Pythagorean Theorem,
Thus,
See Also
| 2012 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 15 |
Followed by Problem 17 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination