1990 IMO Problems/Problem 4: Difference between revisions
No edit summary |
mNo edit summary |
||
| Line 1: | Line 1: | ||
4. Let <math>\mathbb{Q^+}</math> be the set of positive rational numbers. Construct a function <math>f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}</math> such that <math>f(xf(y)) = \frac{f(x)}{y}</math> for all <math>x, y\in{Q^+}</math>. | 4. Let <math>\mathbb{Q^+}</math> be the set of positive rational numbers. Construct a function <math>f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}</math> such that <math>f(xf(y)) = \frac{f(x)}{y}</math> for all <math>x, y\in{Q^+}</math>. | ||
[[Category:Olympiad Algebra Problems]] | |||
[[Category:Functional Equation Problems]] | |||
Revision as of 07:44, 19 July 2016
4. Let
be the set of positive rational numbers. Construct a function
such that
for all
.