1993 USAMO Problems/Problem 3: Difference between revisions
| Line 59: | Line 59: | ||
<P align="right"><math>\mathbb{Q.E.D}</math></P> | <P align="right"><math>\mathbb{Q.E.D}</math></P> | ||
== | == See Also == | ||
{{USAMO box|year=1993|num-b=2|num-a=4}} | {{USAMO box|year=1993|num-b=2|num-a=4}} | ||
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=356413#p356413 Discussion on AoPS/MathLinks] | * [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=356413#p356413 Discussion on AoPS/MathLinks] | ||
{{MAA Notice}} | {{MAA Notice}} | ||
[[Category:Olympiad Algebra Problems]] | |||
Revision as of 06:56, 19 July 2016
Problem 3
Consider functions
which satisfy
| (i) | ||
| (ii) | ||
| (iii) |
Find, with proof, the smallest constant
such that
for every function
satisfying (i)-(iii) and every
in
.
Solution
My claim:
Lemma 1)
for
For
,
(ii)
Assume that it is true for
, then
By principle of induction, lemma 1 is proven.
Lemma 2) For any
,
and
,
.
(lemma 1 and (iii) )
(because
(i) )
,
. Thus,
works.
Let's look at a function
It clearly have property (i) and (ii). For
and WLOG let
,
For
,
. Thus, property (iii) holds too. Thus
is one of the legit function.
but approach to
when
is extremely close to
from the right side.
![]()
See Also
| 1993 USAMO (Problems • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination