Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2015 IMO Problems/Problem 5: Difference between revisions

No edit summary
mNo edit summary
Line 1: Line 1:
Let <math>\mathbb{R}</math> be the set of real numbers. Determine all functions <math>f</math>:<math>\mathbb{R}\rightarrow\mathbb{R}</math> satisfying the equation
Let <math>\mathbb{R}</math> be the set of real numbers. Determine all functions <math>f</math>:<math>\mathbb{R}\rightarrow\mathbb{R}</math> satisfying the equation
<math>f(x+f(x+y))+f(xy) = x+f(x+y)+yf(x)</math>
<math>f(x+f(x+y))+f(xy) = x+f(x+y)+yf(x)</math>
for all real numbers <math>x</math> and <math>y</math>.
for all real numbers <math>x</math> and <math>y</math>.
Proposed by Dorlir Ahmeti, Albania
Proposed by Dorlir Ahmeti, Albania

Revision as of 15:01, 4 April 2016

Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f$:$\mathbb{R}\rightarrow\mathbb{R}$ satisfying the equation

$f(x+f(x+y))+f(xy) = x+f(x+y)+yf(x)$

for all real numbers $x$ and $y$.

Proposed by Dorlir Ahmeti, Albania