2016 AMC 10A Problems/Problem 1: Difference between revisions
| Line 14: | Line 14: | ||
==Solution 3== | ==Solution 3== | ||
Factoring out <math>9!</math> | Factoring out <math>9!</math> gives <math>\frac{11!-10!}{9!} = \frac{9!(11 \cdot 10 - 10)}{9!} = 110-10=\boxed{100}</math>. | ||
==See Also== | ==See Also== | ||
Revision as of 14:16, 5 February 2016
Problem
What is the value of
?
Solution 1
Factoring out the
from the numerator and cancelling out the
s in the numerator and denominator, we have:
Solution 2
We can use subtraction of fractions to get
which will get us
Solution 3
Factoring out
gives
.
See Also
| 2016 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by First Problem |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2016 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by First Problem |
Followed by Problem 2 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination